The BAST algorithm for transit detection
نویسندگان
چکیده
Context. The pioneer space mission for photometric exoplanet searches, CoRoT, steadily monitors about 12000 stars in each of its fields of view. Transit detection algorithms are applied to derive promising planetary candidates, which are then followed-up with ground-based observations. Aims. We present BAST (Berlin Automatic Search for Transits), a new algorithm for periodic transit detection, and test it on simulated CoRoT data. Methods. BAST searches for box-shaped signals in normalized, filtered, variability-fitted, and unfolded light curves. A low-pass filter is applied to remove high-frequency signals, and linear fits to subsections of data are subtracted to remove the star’s variability. A search for periodicity is then performed in transit events identified above a given detection threshold. Some criteria are defined to better separate planet candidates from binary stars. Results. From the analysis of simulated CoRoT light curves, we show that the BAST detection performance is similar to that of the Box-fitting Least-Square (BLS) method if the signal-to-noise ratio is high. However, the BAST box search for transits computes 10 times faster than the BLS method. By adding periodic transits to simulated CoRoT data, we show that the minimum periodic depth detectable with BAST is a linearly increasing function of the noise level. For low-noise light curves, the detection limit corresponds to a transit depth d ≃ 0.01 %, i.e. a planet of 1 Earth radius around a solar-type star.
منابع مشابه
Application of A Route Expansion Algorithm for Transit Routes Design in Grid Networks
Establishing a network of transit routes with satisfactory demand coverage is one of the main goals of transitagencies in moving towards a sustainable urban development. A primary concern in obtaining such anetwork is reducing operational costs. This paper deals with the problem of minimizing construction costsin a grid transportation network while satisfying a certain level o...
متن کاملRound-Based Public Transit Routing (Extended Abstract)
We study the problem of computing best connections in public transit networks. A common approach models the network as a graph (Pyrga et al. 2008) on which it runs a shortest path algorithm (Dijkstra 1959). To enable interactive queries, a variety of speedup techniques exist that use a preprocessing stage to accelerate queries (Delling et al. 2009; Bast et al. 2010). Unfortunately, developed wi...
متن کاملTransit Signal Priority: Proposing a Novel Algorithm to Decrease Delay and Environmental Impacts in BRT Route Intersections
Intersections are considered as the most critical parts of the bus rapid transit (BRT) system. Transit signal priority is one of the efficient solutions to reduce BRT fleet delays at intersections. The aim of this study is to propose a new algorithm to decrease the BRT fleet delays at actuated intersections, while reducing the negative impacts on different approaches. The adaptive strategy is a...
متن کاملTRANSIT Routing on Video Game Map
TRANSIT (Bast, Funke, and Matijevic 2006) is a fast and optimal technique for computing shortest path costs in road networks. It is attractive for its usually modest memory requirements and impressive running times. In this paper we give a first analysis of TRANSIT routing on a set of popular grid-based video-game benchmarks taken from the AI pathfinding literature. We show that in the presence...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008